DIRECT DESIGN OPTIMIZATION FOR TRAJECTORY PERFORMANCE

Mathew Halm University of Illinois at Urbana-Champaign

Design Minimality as Optimization

minimize ≪design params≫

subject to

 \ll resource usage \gg

 $\ll design \ feasibility \gg \\ \ll laws \ of \ physics \gg$

ECE ILLINOIS 2

Direct Numerical Design Optimization

- Computers are great at solving optimization problems!
- Meeting input requirements of numerical solvers can be intractable
 - Requires real/discrete valued cost functions, decision variables, and constraints.
 - Robot functionality and task structure would need to be specified implicitly or explicitly as constraints on the design parameters

Minimality for Task Performance

 Consider subset of design optimization primarily concerned with task kinematics and dynamics

 $\begin{array}{ll} \underset{\ll design \ params \gg}{\text{minimize}} & \ll task \ cost \ + \ design \ cost \gg \\ \text{subject to} & \ll task \ feasibility \gg \\ & \ll laws \ of \ physics \gg \end{array}$

Example: Falcon 9

minimize ≪design params≫ \ll price per launch \gg

subject to

 \ll orbit reachability \gg \ll rigid body dynamics, aerodynamics, etc. \gg

Image: SpaceX

Trajectory Optimization

- Idea: Create process for design optimization by leveraging computational tools used for solving similar problems
- Trajectory Optimization problems search for input *u* that optimizes some cost-to-go *J* and satisfies constraints *d* for a dynamical system *x* = *f*(*x*,*u*)

$$\begin{array}{ll} \underset{\boldsymbol{u}(\cdot)}{\text{minimize}} & \int_{t_0}^{t_f} l(\boldsymbol{x}(t), \boldsymbol{u}(t)) dt + J_f(\boldsymbol{x}(t_f)) & //\text{resource usage / cost} \\ \text{subject to} & \dot{\boldsymbol{x}} = \boldsymbol{f}(\boldsymbol{x}(t), \boldsymbol{u}(t)), \forall t \in [t_0, t_f] & //\text{laws of physics} \\ & \boldsymbol{d}(\boldsymbol{x}(t), \boldsymbol{u}(t)) \geq \boldsymbol{0}, \forall t \in [t_0, t_f] & //\text{trajectory feasibility} \\ \end{array}$$

Trajectory Optimization Examples

- Multi-contact traversal of uneven terrain (Dai, 2016)
- Dexterous hand manipulation (Mordatch, 2012)
- Perching of flapping-wing systems (Halm, 2017)

Direct Trajectory Optimization

- Strategy: solve direct approximation of continuous time problem by optimizing over a sampling of the inputs and state
- *Direct Transcription* explicitly enumerates samples of state and input trajectory as decision variables

$$\begin{array}{ll} \underset{(\boldsymbol{x}_{0},\boldsymbol{u}_{0}),\ldots,(\boldsymbol{x}_{N},\boldsymbol{u}_{N})}{\text{minimize}} & \sum_{i=1}^{N} \frac{\Delta t_{i}}{2} (l(\boldsymbol{x}_{i-1},\boldsymbol{u}_{i-1}) + l(\boldsymbol{x}_{i},\boldsymbol{u}_{i})) + J_{f}(\boldsymbol{x}_{N}) & //resource \ usage \ / \ cost \\ \text{subject to} & \Delta t_{i} > 0, \forall i \in 1,\ldots,N \\ & \boldsymbol{g}(\Delta t_{i},\boldsymbol{x}_{i-1},\boldsymbol{u}_{i-1},\boldsymbol{x}_{i},\boldsymbol{u}_{i}) = \boldsymbol{0}, \forall i \in 1,\ldots,N & //laws \ of \ physics \\ & \boldsymbol{d}(\boldsymbol{x}_{i},\boldsymbol{u}_{i}) \geq \boldsymbol{0}, \forall i \in 0,\ldots,N & //trajectory \ feasibility \end{array}$$

Direct Trajectory Optimization

Direct Design Optimization

- Add design parameters *α* explicitly as decision variable to optimization problem
- Handle variations in equations of motion *f*, trajectory costs / and *J*_r, and trajectory constraints *d* by adding dependence on *α*
- Add additional, independent design cost J_d , and augment **d** with any necessary design feasibility constraints.
- Solution of resulting problem should provide optimal task trajectory and optimal system parameters.

 $\underset{(\boldsymbol{x}_{0},\boldsymbol{u}_{0}),...,(\boldsymbol{x}_{N},\boldsymbol{u}_{N}),\boldsymbol{\alpha}}{\text{minimize}}$

subject to

$$\sum_{i=1}^{N} \frac{\Delta t_i}{2} (l(\boldsymbol{x}_{i-1}, \boldsymbol{u}_{i-1}, \boldsymbol{\alpha}) + l(\boldsymbol{x}_i, \boldsymbol{u}_i, \boldsymbol{\alpha})) + J_f(\boldsymbol{x}_N, \boldsymbol{\alpha}) + J_d(\boldsymbol{\alpha})$$

$$\Delta t_i > 0, \forall i \in 1, \dots, N$$

$$\boldsymbol{g}(\Delta t_i, \boldsymbol{x}_{i-1}, \boldsymbol{u}_{i-1}, \boldsymbol{x}_i, \boldsymbol{u}_i, \boldsymbol{\alpha}) = \boldsymbol{0}, \forall i \in 1, \dots, N$$
$$\boldsymbol{d}(\boldsymbol{x}_i, \boldsymbol{u}_i, \boldsymbol{\alpha}) \geq \boldsymbol{0}, \forall i \in 0, \dots, N$$

Example: 2-Link Planar Arm

ECE ILLINOIS 11

2-Link Planar Arm Results

ECE ILLINOIS 12

Discussion and Future Work

- Base formulation is incredibly flexible
 - Arbitrary nonlinear dynamics allow for application in a very wide range of scenarios, from UAVs to legged locomotion
 - Arbitrary constraints on design parameters allow for discrete decision variables (such as number of linkages) to be handled with Mixed Integer Programming
- Exact solutions to arbitrary problems is NP-Hard
 - High flexibility limits computational efficiency by ignoring structure
 - Only very small numbers of discrete variables can be handles for nonconvex problems
- Consider permuted formulations for large classes of robots, e.g. rigid body systems with frictional contact

