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Design Minimality as Optimization

minlmize < resource usage >
<L design params>>>
subject to <& design feasibility >

< laws of physics >>
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Direct Numerical Design Optimization

e Computers are great at solving optimization problems!
e Meeting input requirements of numerical solvers can be
Intractable
o Requires real/discrete valued cost functions, decision
variables, and constraints.
o Robot functionality and task structure would need to be
specified implicitly or explicitly as constraints on the
design parameters
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Minimality for Task Performance

e Consider subset of design optimization primarily concerned with
task kinematics and dynamics

minimize < task cost + design cost >>
K design params>>
subject to < task feasibility >

< laws of physics >
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Example: Falcon 9

minimize < price per launch >>
< design params>>
subject to & orbit reachability >

< rqid body dynamaics, aerodynamacs, etc. >

Image: SpaceX
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| Trajectory Optimization

e I|dea: Create process for design optimization by leveraging
computational tools used for solving similar problems

e Trajectory Optimization problems search for input u that
optimizes some cost-to-go J and satisfies constraints d for a

dynamical system x = f(x,u)

ts
mini(n)lize / [z (t),w(t))dt + Jp(x(ty)) //resource usage / cost
w(- to

subject to x = f(x(t),u(t)),Vt € [to,ty] //laws of physics
d(x(t),u(t)) > 0,Vt € [to,ty]  //lrajectory feasibility
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Trajectory Optimization Examples

e Multi-contact traversal of uneven terrain (Dai, 2016)
e Dexterous hand manipulation (Mordatch, 2012)
e Perching of flapping-wing systems (Halm, 2017)




Direct Trajectory Optimization

e Strategy: solve direct approximation of continuous time problem
by optimizing over a sampling of the inputs and state

e Direct Transcription explicitly enumerates samples of state and
iInput trajectory as decision variables

N
At;
minimize Z (Wximy, wimy) + Uz, wy)) + Jp(xy)  //resource usage / cost

(w()auO)a'"a(wNauN) 2

i=1

subject to At; >0,Viel,...,N
g(At;, @, ui_,x;,u;) =0,Viel,...,N //laws of physics
dlx;,u;) >0,Viec0,....N //trajectory feasibility




Direct Trajectory Optimization

Gevler — Li — (mi—l + Ati.f(mz’—lg u@'—l)) =0

9vack — Li — (mi—l + At@'f(ﬂ?@', ’U;@)) =0
1

Ghermite — .f(cia E(ui—l + uz)) — Cg =0
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Direct Design Optimization

e Add design parameters a explicitly as decision variable to
optimization problem

e Handle variations in equations of motion f, trajectory costs / and
J, and trajectory constraints d by adding dependence on a

e Add additional, independent design cost J_, and augment d with
any necessary design feasibility constraints.

e Solution of resulting problem should provide optimal task
trajectory and optimal system parameters.

N
At;
minimize Z Wiy, iy, ) + Uz, u;, ) + Jp(xn, o) + Jg(ax)
(wU:u(J):“':(wN:uN):a i—1 2
subject to At;, >0 Viel,....N

g(At;, i, Ui, T, u;, ) =0,Viel, ... N
dlx;,u;,a) >0V €0,...,N
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Example: 2-Link Planar Arm
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| 2-Link Planar Arm Results

L 1
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Discussion and Future Work

e Base formulation is incredibly flexible
o Arbitrary nonlinear dynamics allow for application in a very
wide range of scenarios, from UAVs to legged locomotion
o Arbitrary constraints on design parameters allow for discrete
decision variables (such as number of linkages) to be handled
with Mixed Integer Programming
e EXxact solutions to arbitrary problems is NP-Hard
o High flexibility limits computational efficiency by ignoring
structure
o Only very small numbers of discrete variables can be handles
for nonconvex problems
e Consider permuted formulations for large classes of robots, e.g.
rigid body systems with frictional contact
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