DEALAB

Integrating Design, Engineering, and Analysis

Dan Aukes Assistant Professor The Polytechnic School Arizona State University

General Observation about Robot Design

Incendiary Idea:

ANYONE can design robots

(they just need the right tools)

What do I mean?

IDEAB

I believe in the designer

- Even if they don't know the details of what they're doing
- Novices are generally bad at saying what they want
- Human guidance, intuition helps cut through NP-complexity

Jason was wrong earlier this morning

Design for the Novice

- What if you could "feel" how stiff your new robotic leg design is before you make it?
- What if your robot's geometry optimized itself to walk better?

- Simulation
 - Kinematics & Dynamics
 - FEA
- Optimization
- Interaction
 - Haptics
 - Virtual Reality
 - Wearable Devices

VRClay

What's Needed

- Make it intuitive to design robots
- Bring expert designs to novices
- •Give early meaning to designs
 - Manufacturing
 - Analysis

- Interaction
- Prototyping
- Applications:
 - STEM Education
 - New Manufacturing
 - Rapid Prototyping

Minimalism by modularity

- Modular building blocks
 - Joints
 - Springs, Dampers, Masses
 - Actuators

- Connections & Interfaces
 - Electrical
 - Mechanical
 - To off-the-shelf components

Minimilasim via Underactuation

ARM-H Application

Dynamic Simulation in Robot Design

- Dynamic Test
 - Kinematics
 - Transmission
 - Finger Shape
 - Object Shape
 - Friction
 - Mass & Time
 - Full Workspace

- Prescribed-Position
 - Kinematics
 - Transmission
 - Finger Shape
 - Object Shape
 - Friction
 - Mass & Time
 - Full Workspace

- Prescribed-Force
 - Kinematics
 - Transmission
 - Finger Shape
 - Object Shape
 - Friction
 - Mass & Time
 - Full Workspace

Locked vs. Unlocked

Design Variations & Performance

Minimality in Representation

popupCAD

Cutting

Stacking and Curing

Temperature Pressure Time

Release

Unfold

Layered Operations using Constructive Solid Geometry(CSG)

$$\mathbf{B} = (\emptyset, B, B)$$

$$\mathbf{A} = (A, A, \emptyset)$$

$$\mathbf{A} \cup ^{K} \mathbf{B}$$

$$\mathbf{A} \cap ^{K} \mathbf{B}$$

$$\mathbf{A} \wedge ^{K} \mathbf{B}$$

Other Operations

Erosion and Dilation

Shift and Flip

Promotion and Selection

Null Laminate

$$\mathbf{0} = \emptyset^{\kappa}$$

D. M. Aukes, B. Goldberg, M. R. Cutkosky, and R. J. Wood, Smart Mater. Struct., 2014

popupCAD Designs

Several New Tools

- Abstracting the Design Process from the geometry
- Dynamic Simulation:
 - Understand ideal rigid body motion
- FEA-based stiffness analysis
 - Understand non-ideal bending of "rigid" links

New Dynamics System

- Written in Python
- Symbolic expressions using Sympy
- Kane's Method for generating equtions of motion
 - Requires ability to perform vector operations(cross, dot, derivative, etc)
 - Reduced representation considers only named state variables

Rotations between Reference Frames

$${}^{A}\mathbf{R}^{B} = \begin{pmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} - \mathbf{f} * \mathbf{f}^{T} \end{pmatrix} \cos(q) + \begin{bmatrix} 0 & -f_{z} & f_{y} \\ f_{z} & 0 & -f_{x} \\ -f_{y} & f_{x} & 1 \end{bmatrix} \sin(q) + \mathbf{f} * \mathbf{f}^{T}$$

$${}^{A}\vec{\omega}^{B} = \dot{q}\hat{f}, \text{ where}$$

$$\mathbf{f} = \begin{bmatrix} f_{x} & f_{y} & f_{z} \end{bmatrix}^{T} \text{ and}$$

$$\dot{q} = \frac{\mathrm{d}(q)}{\mathrm{d}t}.$$

Branching Topologies

Vectors

```
>>> e = A.x+B.y
>>> 6
A.x + B.y
>>> e.express(A)
A.x*(-sin(qB) + 1) + A.y*cos(qB)
>>> e.express(B)
B.x*cos(qB) + B.y*(-sin(qB) + 1)
>>> e.time derivative(N,system)
-qA d*N.x*sin(qA) + qA d*N.y*cos(qA) +
A.x*(-qA d*cos(qB) - qB d*cos(qB)) + A
y^*(-qA d*sin(qB) - qB d*sin(qB))
>>>
```

Dynamic Simulation in Laminates

On Github

https://github.com/idealabasu/pynamics

In Gazebo

Finite Element Analysis

- Triangular elements: easy to generate from laminate shapes
- FEA package for Python
- New elements can be derived dynamically given new shape functions
 - Incorporates several interpolation methods: linear, quadratic, cubic, BCIZ
 - Works with classical laminate theory.
- On Github soon...

Laminate Geometry

Laminate Stiffness

$$\left\{\frac{N}{M}\right\} = \left[\frac{A \mid B}{B \mid D}\right] \left\{\frac{\varepsilon^{\circ}}{\kappa}\right\}$$

$$A_{ij} = \sum_{k=1}^{n} (\bar{Q}_{ij})_k (h_k - h_{k-1})$$

$$B_{ij} = \frac{1}{2} \sum_{k=1}^{n} (\bar{Q}_{ij})_k (h_k^2 - h_{k-1}^2)$$

$$D_{ij} = \frac{1}{3} \sum_{k=1}^{n} (\bar{Q}_{ij})_k (h_k^3 - h_{k-1}^3)$$

Laminate FEA

